Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Biologicals ; 86: 101758, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38518435

RESUMEN

Fecal microbiota transplantation (FMT) has been demonstrated to be efficacious in preventing recurrent Clostridioides difficile (C. difficile) infections, and is being investigated for treatment of several other diseases including inflammatory bowel disease, cancer, obesity, liver disease, and diabetes. To speed up the translation of FMT into clinical practice as a safe and standardized therapeutic intervention, additional evidence-based technical and regulatory guidance is needed. To this end in May of 2022, the International Alliance for Biological Standardization (IABS) and the BIOASTER Microbiology Technology Institute hosted a second webinar to discuss key issues still impeding the advancement and standardization of FMT. The goal of this two-day webinar was to provide a forum for scientific experts to share and discuss data and key challenges with one another. Discussion included a focus on the evaluation of safety, efficacy, clinical trial design, reproducibility and accuracy in obtained microbiome measurements and data reporting, and the potential for standardization across these areas. It also focused on increasing the application potential and visibility of FMT beyond treating C. difficile infections.

2.
Front Microbiol ; 14: 1232250, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601345

RESUMEN

In this study, we assess the scattering of light and auto-fluorescence from single bacterial cells to address the challenge of fast (<2 h), label-free phenotypic antimicrobial susceptibility testing (AST). Label-free flow cytometry is used for monitoring both the respiration-related auto-fluorescence in two different fluorescence channels corresponding to FAD and NADH, and the morphological and structural information contained in the light scattered by individual bacteria during incubation with or without antibiotic. Large multi-parameter data are analyzed using dimensionality reduction methods, based either on a combination of 2D binning and Principal Component Analysis, or with a one-class Support Vector Machine approach, with the objective to predict the Susceptible or Resistant phenotype of the strain. For the first time, both Escherichia coli (Gram-negative) and Staphylococcus epidermidis (Gram-positive) isolates were tested with a label-free approach, and, in the presence of two groups of bactericidal antibiotic molecules, aminoglycosides and beta-lactams. Our results support the feasibility of label-free AST in less than 2 h and suggest that single cell auto-fluorescence adds value to the Susceptible/Resistant phenotyping over single-cell scattering alone, in particular for the mecA+ Staphylococcus (i.e., resistant) strains treated with oxacillin.

3.
Front Microbiol ; 14: 1036386, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36876086

RESUMEN

Bordetella pertussis is the bacterial causative agent of whooping cough, a serious respiratory illness. An extensive knowledge on its virulence regulation and metabolism is a key factor to ensure pertussis vaccine manufacturing process robustness. The aim of this study was to refine our comprehension of B. pertussis physiology during in vitro cultures in bioreactors. A longitudinal multi-omics analysis was carried out over 26 h small-scale cultures of B. pertussis. Cultures were performed in batch mode and under culture conditions intending to mimic industrial processes. Putative cysteine and proline starvations were, respectively, observed at the beginning of the exponential phase (from 4 to 8 h) and during the exponential phase (18 h 45 min). As revealed by multi-omics analyses, the proline starvation induced major molecular changes, including a transient metabolism with internal stock consumption. In the meantime, growth and specific total PT, PRN, and Fim2 antigen productions were negatively affected. Interestingly, the master virulence-regulating two-component system of B. pertussis (BvgASR) was not evidenced as the sole virulence regulator in this in vitro growth condition. Indeed, novel intermediate regulators were identified as putatively involved in the expression of some virulence-activated genes (vags). Such longitudinal multi-omics analysis applied to B. pertussis culture process emerges as a powerful tool for characterization and incremental optimization of vaccine antigen production.

4.
Biologicals ; 76: 31-35, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35086768

RESUMEN

Faecal microbiota transplantation (FMT) is widely reported to be an effective treatment against recurrent Clostridioides difficile infections. Recent clinical studies support the therapeutic use of FMT for several other pathologies including inflammatory bowel disease, several types of cancer, and other functional or metabolic disorders. Initial guidelines are now available to overcome some of the technical and logistical issues for establishing a non-standardized treatment into clinical practice with proper safety and governance. To aid the improvement of guidance and standardization requirements for FMT, the International Alliance for Biological Standardization (IABS) and the BIOASTER Microbiology Technology Institute hosted a joint online workshop in May of 2021. The goal of the webinar was to provide a multi-disciplinary perspective of the ongoing efforts to develop FMT guidelines including technical, regulatory, and standardization requirements. Recognized experts gave insights into state-of-the art approaches and standards developed by international organizations and institutions.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Enfermedades Inflamatorias del Intestino , Infecciones por Clostridium/terapia , Trasplante de Microbiota Fecal , Humanos , Resultado del Tratamiento
6.
Nat Protoc ; 15(9): 2920-2955, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32788719

RESUMEN

Characterization of immune responses is currently hampered by the lack of systems enabling quantitative and dynamic phenotypic characterization of individual cells and, in particular, analysis of secreted proteins such as cytokines and antibodies. We recently developed a simple and robust microfluidic platform, DropMap, to measure simultaneously the kinetics of secretion and other cellular characteristics, including endocytosis activity, viability and expression of cell-surface markers, from tens of thousands of single immune cells. Single cells are compartmentalized in 50-pL droplets and analyzed using fluorescence microscopy combined with an immunoassay based on fluorescence relocation to paramagnetic nanoparticles aligned to form beadlines in a magnetic field. The protocol typically takes 8-10 h after preparation of microfluidic chips and chambers, which can be done in advance. By contrast, enzyme-linked immunospot (ELISPOT), flow cytometry, time-of-flight mass cytometry (CyTOF), and single-cell sequencing enable only end-point measurements and do not enable direct, quantitative measurement of secreted proteins. We illustrate how this system can be used to profile downregulation of tumor necrosis factor-α (TNF-α) secretion by single monocytes in septic shock patients, to study immune responses by measuring rates of cytokine secretion from single T cells, and to measure affinity of antibodies secreted by single B cells.


Asunto(s)
Sistema Inmunológico/citología , Dispositivos Laboratorio en un Chip , Fenotipo , Análisis de la Célula Individual/instrumentación , Animales , Linfocitos B/citología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Ratones , Microscopía Fluorescente
7.
Front Microbiol ; 10: 604, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024468

RESUMEN

Legionellosis is a severe respiratory illness caused by the inhalation of aerosolized water droplets contaminated with the opportunistic pathogen Legionella pneumophila. The ability of L. pneumophila to produce biofilms has been associated with its capacity to colonize and persist in human-made water reservoirs and distribution systems, which are the source of legionellosis outbreaks. Nevertheless, the factors that mediate L. pneumophila biofilm formation are largely unknown. In previous studies we reported that the adhesin Legionella collagen-like protein (Lcl), is required for auto-aggregation, attachment to multiple surfaces and the formation of biofilms. Lcl structure contains three distinguishable regions: An N-terminal region with a predicted signal sequence, a central region containing tandem collagen-like repeats (R-domain) and a C-terminal region (C-domain) with no significant homology to other known proteins. Lcl R-domain encodes tandem repeats of the collagenous tripeptide Gly-Xaa-Yaa (GXY), a motif that is key for the molecular organization of mammalian collagen and mediates the binding of collagenous proteins to different cellular and environmental ligands. Interestingly, Lcl is polymorphic in the number of GXY tandem repeats. In this study, we combined diverse biochemical, genetic, and cellular approaches to determine the role of Lcl domains and GXY repeats polymorphisms on the structural and functional properties of Lcl, as well as on bacterial attachment, aggregation and biofilm formation. Our results indicate that the R-domain is key for assembling Lcl collagenous triple-helices and has a more preponderate role over the C-domain in Lcl adhesin binding properties. We show that Lcl molecules oligomerize to form large supramolecular complexes to which both, R and C-domains are required. Furthermore, we found that the number of GXY tandem repeats encoded in Lcl R-domain correlates positively with the binding capabilities of Lcl and with the attachment and biofilm production capacity of L. pneumophila strains. Accordingly, the number of GXY tandem repeats in Lcl influences the clinical prevalence of L. pneumophila strains. Therefore, the number of Lcl tandem repeats could be considered as a potential predictor for virulence in L. pneumophila isolates.

8.
Sensors (Basel) ; 18(8)2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30110899

RESUMEN

The adhesin Legionella collagen-like (Lcl) protein can bind to extracellular matrix components and mediate the binding of Legionella pneumophila to host cells. In this study, electrochemical impedance spectroscopy (EIS) and surface plasmon resonance (SPR)-based biosensors were employed to characterize these interactions between glycosaminoglycans (GAGs) and the adhesin Lcl protein. Fucoidan displayed a high affinity (KD 18 nM) for Lcl protein. Chondroitin sulfate A and dermatan sulfate differ in the position of a carboxyl group replacing D-glucuronate with D-iduronate. Our results indicated that the presence of D-iduronate in dermatan sulfate strongly hindered its interaction with Lcl. These biophysical studies provided valuable information in our understanding of adhesin-ligand interactions related to Legionella pneumophila infections.


Asunto(s)
Técnicas Biosensibles , Colágeno/metabolismo , Glicosaminoglicanos/metabolismo , Legionella pneumophila/química , Adhesinas Bacterianas/metabolismo , Unión Proteica
9.
Artículo en Inglés | MEDLINE | ID: mdl-29774203

RESUMEN

Legionella pneumophila (Lp) exhibits different morphologies with varying degrees of virulence. Despite their detection in environmental sources of outbreaks and in respiratory tract secretions and lung autopsies from patients, the filamentous morphotype of Lp remains poorly studied. We previously demonstrated that filamentous Lp invades lung epithelial cells (LECs) and replicates intracellularly in a Legionella containing vacuole. Filamentous Lp activates ß1integrin and E-cadherin receptors at the surface of LECs leading to the formation of actin-rich cell membrane structures we termed hooks and membrane wraps. These structures entrap segments of an Lp filament on host cell surface and mediate bacterial internalization. Here we investigated the molecular mechanisms responsible for the actin rearrangements needed for the formation and elongation of these membrane wraps and bacterial internalization. We combined genetic and pharmacological approaches to assess the contribution of signaling downstream of ß1integrin and E-cadherin receptors, and Lp Dot/Icm secretion system- translocated effectors toward the invasion process. Our studies demonstrate a multi-stage mechanism of LEC invasion by filamentous Lp. Bacterial attachment to host cells depends on signaling downstream of ß1integrin and E-cadherin activation, leading to Rho GTPases-dependent activation of cellular actin nucleating proteins, Arp2/3 and mDia. This mediates the formation of primordial membrane wraps that entrap the filamentous bacteria on the cell surface. Following this, in a second phase of the invasion process the Dot/Icm translocated effector VipA mediates rapid membrane wrap elongation, leading to the engulfment of the filamentous bacteria by the LECs. Our findings provide the first description of Rho GTPases and a Dot/Icm effector VipA regulating the actin dynamics needed for the invasion of epithelial cells by Lp.


Asunto(s)
Proteínas Bacterianas/metabolismo , Células Epiteliales/microbiología , Legionella pneumophila/fisiología , Sistemas de Secreción Tipo IV/fisiología , Proteínas de Unión al GTP rho/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Bacterianas/genética , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular , Endocitosis/fisiología , Forminas , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Enfermedad de los Legionarios/microbiología , Vacuolas/microbiología , Proteínas de Unión al GTP rho/genética
11.
Cell Microbiol ; 18(10): 1319-38, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26936325

RESUMEN

Clustered regularly interspaced short palindromic repeats with CRISPR-associated gene (CRISPR-Cas) systems are widely recognized as critical genome defense systems that protect microbes from external threats such as bacteriophage infection. Several isolates of the intracellular pathogen Legionella pneumophila possess multiple CRISPR-Cas systems (type I-C, type I-F and type II-B), yet the targets of these systems remain unknown. With the recent observation that at least one of these systems (II-B) plays a non-canonical role in supporting intracellular replication, the possibility remained that these systems are vestigial genome defense systems co-opted for other purposes. Our data indicate that this is not the case. Using an established plasmid transformation assay, we demonstrate that type I-C, I-F and II-B CRISPR-Cas provide protection against spacer targets. We observe efficient laboratory acquisition of new spacers under 'priming' conditions, in which initially incomplete target elimination leads to the generation of new spacers and ultimate loss of the invasive DNA. Critically, we identify the first known target of L. pneumophila CRISPR-Cas: a 30 kb episome of unknown function whose interbacterial transfer is guarded against by CRISPR-Cas. We provide evidence that the element can subvert CRISPR-Cas by mutating its targeted sequences - but that primed spacer acquisition may limit this mechanism of escape. Rather than generally impinging on bacterial fitness, this element drives a host specialization event - with improved fitness in Acanthamoeba but a reduced ability to replicate in other hosts and conditions. These observations add to a growing body of evidence that host range restriction can serve as an existential threat to L. pneumophila in the wild.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Legionella pneumophila/genética , Acanthamoeba castellanii/microbiología , Secuencia de Bases , Secuencia Conservada , Evolución Molecular , Genes Bacterianos , Interacciones Huésped-Patógeno , Legionella pneumophila/crecimiento & desarrollo , Viabilidad Microbiana , Análisis de Secuencia de ADN
12.
Antimicrob Agents Chemother ; 58(2): 909-15, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24277019

RESUMEN

The activity of solithromycin was evaluated against clinical Legionella pneumophila serogroup 1 (Lp1) isolates (n = 196) collected in Ontario, Canada, from 1980 to 2011. Its in vitro activity was compared to that of azithromycin (AZM) using the broth microdilution method. Solithromycin had a MIC50 of ≤0.015 µg/ml and a MIC90 of 0.031 µg/ml, making its activity at least 8-fold to 32-fold higher than that of AZM (MIC50 and MIC90, 0.125 µg/ml and 1 µg/ml, respectively). Ninety-nine percent of the isolates had MICs for solithromycin ranging from ≤0.015 µg/ml to 0.031 µg/ml, whereas 83.6% of the isolates showed MICs for AZM ranging from 0.062 µg/ml to 0.25 µg/ml. Interestingly, 96.7% (30 out of 31 clinical isolates) identified with higher AZM MICs (0.5 µg/ml to 2 µg/ml) belonged to the clinically prevalent sequence type 1. To investigate the intracellular activity of solithromycin, in vitro invasion assays were also performed against a subset of representative Lp1 isolates internalized within human lung epithelial cells. Solithromycin and AZM both inhibited growth of all intracellular Lp1 isolates at 1× or 8× MICs, displaying bacteriostatic effects, as would be expected with protein synthesis inhibitor rather than bactericidal activity. Solithromycin demonstrated the highest in vitro and intracellular potency against all Lp1 isolates compared to AZM. Given the rapid spread of resistance mechanisms among respiratory pathogens and the reported treatment failures in legionellosis, the development of this new fluoroketolide, already in phase 3 oral clinical studies, constitutes a promising alternative option for the treatment of legionellosis.


Asunto(s)
Antibacterianos/farmacología , Legionella pneumophila/efectos de los fármacos , Macrólidos/farmacología , Triazoles/farmacología , Azitromicina/farmacología , Línea Celular Tumoral , Ensayos Clínicos Fase III como Asunto , Células Epiteliales/efectos de los fármacos , Células Epiteliales/microbiología , Humanos , Legionella pneumophila/clasificación , Legionella pneumophila/crecimiento & desarrollo , Legionella pneumophila/aislamiento & purificación , Enfermedad de los Legionarios/tratamiento farmacológico , Enfermedad de los Legionarios/microbiología , Pruebas de Sensibilidad Microbiana , Serotipificación
13.
Appl Environ Microbiol ; 80(4): 1441-54, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24334670

RESUMEN

Although only partially understood, multicellular behavior is relatively common in bacterial pathogens. Bacterial aggregates can resist various host defenses and colonize their environment more efficiently than planktonic cells. For the waterborne pathogen Legionella pneumophila, little is known about the roles of autoaggregation or the parameters which allow cell-cell interactions to occur. Here, we determined the endogenous and exogenous factors sufficient to allow autoaggregation to take place in L. pneumophila. We show that isolates from Legionella species which do not produce the Legionella collagen-like protein (Lcl) are deficient in autoaggregation. Targeted deletion of the Lcl-encoding gene (lpg2644) and the addition of Lcl ligands impair the autoaggregation of L. pneumophila. In addition, Lcl-induced autoaggregation requires divalent cations. Escherichia coli producing surface-exposed Lcl is able to autoaggregate and shows increased biofilm production. We also demonstrate that L. pneumophila infection of Acanthamoeba castellanii and Hartmanella vermiformis is potentiated under conditions which promote Lcl dependent autoaggregation. Overall, this study shows that L. pneumophila is capable of autoaggregating in a process that is mediated by Lcl in a divalent-cation-dependent manner. It also reveals that Lcl potentiates the ability of L. pneumophila to come in contact, attach, and infect amoebae.


Asunto(s)
Adhesión Bacteriana , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Legionella pneumophila/fisiología , Fagocitos/microbiología , Acanthamoeba castellanii/microbiología , Proteínas Bacterianas/genética , Cationes Bivalentes/metabolismo , Escherichia coli/genética , Escherichia coli/fisiología , Eliminación de Gen , Legionella pneumophila/genética , Lobosea/microbiología
14.
J Cell Biol ; 203(6): 1081-97, 2013 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-24368810

RESUMEN

Although filamentous morphology in bacteria has been associated with resistance to phagocytosis, our understanding of the cellular mechanisms behind this process is limited. To investigate this, we followed the phagocytosis of both viable and dead Legionella pneumophila filaments. The engulfment of these targets occurred gradually and along the longitudinal axis of the filament, therefore defining a long-lasting phagocytic cup stage that determined the outcome of phagocytosis. We found that these phagocytic cups fused with endosomes and lysosomes, events linked to the maturation of phagosomes according to the canonical pathway, and not with the remodeling of phagocytic cups. Nevertheless, despite acquiring phagolysosomal features these phagocytic cups failed to develop hydrolytic capacity before their sealing. This phenomenon hampered the microbicidal activity of the macrophage and enhanced the capacity of viable filamentous L. pneumophila to escape phagosomal killing in a length-dependent manner. Our results demonstrate that key aspects in phagocytic cup remodeling and phagosomal maturation could be influenced by target morphology.


Asunto(s)
Legionella pneumophila/inmunología , Macrófagos/fisiología , Fagocitosis , Citoesqueleto de Actina/inmunología , Citoesqueleto de Actina/ultraestructura , Animales , Línea Celular , Legionella pneumophila/ultraestructura , Macrófagos/citología , Ratones , Ratones Endogámicos BALB C , Fagosomas/fisiología , Fagosomas/ultraestructura , Propiedades de Superficie
15.
Int J Mol Sci ; 14(11): 21660-75, 2013 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-24185913

RESUMEN

Legionellosis is mostly caused by Legionella pneumophila and is defined as a severe respiratory illness with a case fatality rate ranging from 5% to 80%. L. pneumophila is ubiquitous in natural and anthropogenic water systems. L. pneumophila is transmitted by inhalation of contaminated aerosols produced by a variety of devices. While L. pneumophila replicates within environmental protozoa, colonization and persistence in its natural environment are also mediated by biofilm formation and colonization within multispecies microbial communities. There is now evidence that some legionellosis outbreaks are correlated with the presence of biofilms. Thus, preventing biofilm formation appears as one of the strategies to reduce water system contamination. However, we lack information about the chemical and biophysical conditions, as well as the molecular mechanisms that allow the production of biofilms by L. pneumophila. Here, we discuss the molecular basis of biofilm formation by L. pneumophila and the roles of other microbial species in L. pneumophila biofilm colonization. In addition, we discuss the protective roles of biofilms against current L. pneumophila sanitation strategies along with the initial data available on the regulation of L. pneumophila biofilm formation.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Legionella pneumophila/crecimiento & desarrollo , Legionelosis/microbiología , Humanos , Legionella pneumophila/patogenicidad , Legionelosis/patología
16.
PLoS One ; 8(8): e72550, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24009690

RESUMEN

Spirochetes are bacteria characterized in part by rotating periplasmic flagella that impart their helical or flat-wave morphology and motility. While most other bacteria rely on a transcriptional cascade to regulate the expression of motility genes, spirochetes employ post-transcriptional mechanism(s) that are only partially known. In the present study, we characterize a spontaneous non-motile mutant of the relapsing fever spirochete Borrelia hermsii that was straight, non-motile and deficient in periplasmic flagella. We used next generation DNA sequencing of the mutant's genome, which when compared to the wild-type genome identified a 142 bp deletion in the chromosomal gene encoding the flagellar export apparatus protein FliH. Immunoblot and transcription analyses showed that the mutant phenotype was linked to the posttranscriptional deficiency in the synthesis of the major periplasmic flagellar filament core protein FlaB. Despite the lack of FlaB, the amount of FlaA produced by the fliH mutant was similar to the wild-type level. The turnover of the residual pool of FlaB produced by the fliH mutant was comparable to the wild-type spirochete. The non-motile mutant was not infectious in mice and its inoculation did not induce an antibody response. Trans-complementation of the mutant with an intact fliH gene restored the synthesis of FlaB, a normal morphology, motility and infectivity in mice. Therefore, we propose that the flagellar export apparatus protein regulates motility of B. hermsii at the post-transcriptional level by influencing the synthesis of FlaB.


Asunto(s)
Proteínas Bacterianas/metabolismo , Borrelia/fisiología , Borrelia/patogenicidad , Flagelina/genética , Flagelina/metabolismo , Procesamiento Postranscripcional del ARN , Fiebre Recurrente/microbiología , Animales , Borrelia/ultraestructura , Modelos Animales de Enfermedad , Flagelos/metabolismo , Flagelos/ultraestructura , Regulación Bacteriana de la Expresión Génica , Orden Génico , Prueba de Complementación Genética , Genoma Bacteriano , Humanos , Ratones , Mutación , Sistemas de Lectura Abierta , Estabilidad Proteica , Transcripción Genética , Virulencia
17.
PLoS One ; 8(6): e67298, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23826259

RESUMEN

Legionella pneumophila is the primary etiologic agent of legionellosis, a potentially fatal respiratory illness. Amongst the sixteen described L. pneumophila serogroups, a majority of the clinical infections diagnosed using standard methods are serogroup 1 (Sg1). This high clinical prevalence of Sg1 is hypothesized to be linked to environmental specific advantages and/or to increased virulence of strains belonging to Sg1. The genetic determinants for this prevalence remain unknown primarily due to the limited genomic information available for non-Sg1 clinical strains. Through a systematic attempt to culture Legionella from patient respiratory samples, we have previously reported that 34% of all culture confirmed legionellosis cases in Ontario (n = 351) are caused by non-Sg1 Legionella. Phylogenetic analysis combining multiple-locus variable number tandem repeat analysis and sequence based typing profiles of all non-Sg1 identified that L. pneumophila clinical strains (n = 73) belonging to the two most prevalent molecular types were Sg6. We conducted whole genome sequencing of two strains representative of these sequence types and one distant neighbour. Comparative genomics of the three L. pneumophila Sg6 genomes reported here with published L. pneumophila serogroup 1 genomes identified genetic differences in the O-antigen biosynthetic cluster. Comparative optical mapping analysis between Sg6 and Sg1 further corroborated this finding. We confirmed an altered O-antigen profile of Sg6, and tested its possible effects on growth and replication in in vitro biological models and experimental murine infections. Our data indicates that while clinical Sg1 might not be better suited than Sg6 in colonizing environmental niches, increased bloodstream dissemination through resistance to the alternative pathway of complement mediated killing in the human host may explain its higher prevalence.


Asunto(s)
Legionella pneumophila/genética , Enfermedad de los Legionarios/inmunología , Enfermedad de los Legionarios/microbiología , Acanthamoeba castellanii/microbiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Modelos Animales de Enfermedad , Femenino , Genoma Bacteriano , Humanos , Legionella pneumophila/clasificación , Legionella pneumophila/crecimiento & desarrollo , Legionella pneumophila/inmunología , Enfermedad de los Legionarios/epidemiología , Ratones , Antígenos O/biosíntesis , Antígenos O/genética , Ontario , Filogenia , Prevalencia , Conformación Proteica , Proteoma , Serogrupo , Células U937
18.
Antimicrob Agents Chemother ; 57(9): 4322-4328, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23796936

RESUMEN

We evaluated the activity of solithromycin against 196 clinical gonococcal isolates collected at the Public Health Ontario Laboratories, Toronto, Canada, including isolates with different levels of azithromycin resistance, as well as the role of pH in MIC determinations using pH-adjusted agar plates (pH range, 5.6 to 7.6). In vitro invasion assays were performed using monolayers of HeLa epithelial cells and clinical gonococci displaying different azithromycin MICs; infected cultures were treated with solithromycin, and its intracellular activity was determined by CFU assays after 3 and 20 h of exposure. Solithromycin displayed a MIC50 and MIC90 of 0.0625 and 0.125 µg/ml, respectively, making its activity at least 4-fold higher than that of azithromycin. Clinical isolates with elevated MICs for azithromycin (MICs of ≥2,048 µg/ml and 4 to 8 µg/ml) showed solithromycin MIC values of 8 and 0.5 µg/ml, respectively. In contrast to azithromycin, solithromycin MICs were not significantly affected by acidic pHs, suggesting more stability at lower pH. Moreover, when intracellular Neisseria gonorrhoeae isolates were incubated with solithromycin at 4 times, 1 times, and one-fourth of the MIC, the exposure to solithromycin resulted in the progressive loss of viability of most isolates over time. The intracellular activity of solithromycin, combined with the low MICs to this agent, indicates that it may be an attractive option for gonorrhea treatment if clinical trials in development reveal that this drug can be used safely in adult indications, especially when multidrug-resistant clinical isolates are now emerging.

19.
Biosens Bioelectron ; 41: 354-8, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23021840

RESUMEN

The development of two-dimensional photonic crystals (PCs) on a copolymer film is described in connection with Fresnel reflection spectroscopy and fluorescence microscopy. Label-free detection of Legionella pneumophila was performed using a PC platform with a detection limit of 200 cells/mL. L. pneumophila is well known as the cause of Legionnaires' disease and a lesser form called Pontiac fever. Since death by L. pneumophila infection depends on the early anti-microbial treatment, rapid diagnosis of this disease is critical for efficient treatment and patient survival. Conventional assays have turn-around times measurable in several hours to days, and are limited in their detection of various serogroups. Due to the recent introduction of regulatory guidelines for routine testing of water cooling towers and treatment facilities, biosensors for the on-field detection of Legionella spp. are highly in demand. The versatile and economical immunochips described here can be easily adapted for the monitoring of L. pneumophila serogroups in clinical and environmental samples in a few minutes.


Asunto(s)
Carga Bacteriana/instrumentación , Técnicas Biosensibles/instrumentación , Inmunoensayo/instrumentación , Legionella pneumophila/aislamiento & purificación , Membranas Artificiales , Polímeros/química , Refractometría/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
PLoS One ; 7(9): e46462, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23029523

RESUMEN

Legionellosis is mostly caused by Legionella pneumophila (Lp) and is defined by a severe respiratory illness with a case fatality rate ranging from 5 to 80%. In a previous study, we showed that a glycosaminoglycan (GAG)-binding adhesin of Lp, named Lcl, is produced during legionellosis and is unique to the L. pneumophila species. Importantly, a mutant depleted in Lcl (Δlpg2644) is impaired in adhesion to GAGs and epithelial cells and in biofilm formation. Here, we examine the molecular function(s) of Lcl and the transcriptional regulation of its encoding gene during different stages of the biofilm development. We show that the collagen repeats and the C-terminal domains of Lcl are crucial for the production of biofilm. We present evidence that Lcl is involved in the early step of surface attachment but also in intercellular interactions. Furthermore, we address the relationship between Lcl gene regulation during biofilm formation and quorum sensing (QS). In a static biofilm assay, we show that Lcl is differentially regulated during growth phases and biofilm formation. Moreover, we show that the transcriptional regulation of lpg2644, mediated by a prototype of QS signaling homoserine lactone (3OC12-HSL), may play a role during the biofilm development. Thus, transcriptional down-regulation of lpg2644 may facilitate the dispersion of Lp to reinitiate biofilm colonization on a distal surface.


Asunto(s)
Adhesinas Bacterianas/fisiología , Biopelículas , Legionella pneumophila/fisiología , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Secuencias de Aminoácidos , Adhesión Bacteriana , Expresión Génica , Regulación Bacteriana de la Expresión Génica , Legionella pneumophila/crecimiento & desarrollo , Legionella pneumophila/metabolismo , Estructura Terciaria de Proteína , Percepción de Quorum , Secuencias Repetidas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...